
Lists	of	Lists

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	6.5

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.



Learning	Outcomes

• At	the	end	of	this	lesson,	the	student	should	
be	able	to
– Give	examples	of	S-expressions
– Give	3	reasons	why	S-expressions	are	important
–Write	the	data	definition	and	template	for	S-
expressions

–Write	functions	on	S-expressions	using	the	
template

2



S-expressions	(informally)

• An	S-expression	is	something	that	is	either	a	
string	or	a	list	of	S-expressions.

• So	if	it's	a	list,	it	could		contain	strings,	or	lists	
of	strings,	or	lists	of	lists	of	strings,	etc.

• Think	of	it	as	a	nested	list,	where	there's	no	
bound	on	how	deep	the	nesting	can	get.

3



Some	History
• An	S-expression	is	a	kind	of	nested	list,	that	is,	a	list	whose	elements	may	

be	other	lists.		Here	is	an	informal	history	of	S-expressions.		
• S-expressions	were	invented	by	John	McCarthy (1927-2011)	for	the	

programming	language	Lisp	in	1958.		McCarthy	invented	Lisp	to	solve	
problems	in	artificial	intelligence.		

• Lisp	introduced	lists,	S-expressions,	and	parenthesized	syntax.		The	syntax	
of	Lisp	and	its	descendants,	like	Racket,	is	based	on	S-expressions.		

• The	use	of	S-expressions	for	syntax	makes	it	easy	to	read	and	write	
programs:		all	you	have	to	do	is	balance	parentheses.		This	is	much	simpler	
than	the	syntax	of	other	programming	languages,	which	have	semicolons	
and	other	rules	that	can	make	programs	harder	to	read.

• S-expressions	are	one	of	the	great	inventions	of	modern	programming.		
They	were	the	original	idea	from	which	things	like	XML	and	JSON	grew.

4



Examples
"alice"
"bob"
"carole"
(list "alice" "bob")
(list (list "alice" "bob") "carole")
(list "dave" 

(list "alice" "bob") 
"carole")

(list (list "alice" "bob") 
(list (list "ted" "carole")))

5

Here	are	some	examples	of	S-
expressions,	 in	list notation	

(See	Lesson	4.1)



Examples

"alice"
"bob"
"carole"
("alice" "bob")
(("alice" "bob") "carole")
("dave" ("alice" "bob") "carole")
(("alice" "bob") 
(("ted" "carole")))

6

Here	are	the	same	examples	of	
S-expressions,	in	write notation	
(See	Lesson	4.1).		We	often	use	
write	notation	because	it	is	more	

compact.



Data	Definition

An	S-expression	of	Strings	(SoS)	is	either
-- a	String
-- a	List	of	SoS's (LoSS)

A	List	of	SoS's (LoSS)	is	either
-- empty
-- (cons	SoS LoSS)

7

Let's	write	down	a	precise	definition:
• An	S-expression	is	either	a	string	

or	a	list	of	S-expressions
• A	list	of	S-expressions	 is	either	

empty	or	the	cons	of	an	S-
expressions	and	another	 list	of	S-
expressions.

• Note	that	the	data	definition	for	
"list	of	S-expressions"	follows	the	
familiar	pattern	for	lists.

• These	two	definitions	are	
mutually	recursive,	as	you	can	see	
from	the	two	arrows



This	is	mutual	recursion

SoS LoSS

8

defined	in	terms	of	

defined	in	terms	of	



Data	Structures

"alice"
"bob"
"carole"
("alice" "bob")

9

"alice" "bob"

A	list	of	S-expressions	is	
implemented	as	a	singly-linked	 list.		
Here	is	an	example.



Data	Structures

(("alice" "bob") "carole")

10

"carole"

"alice" "bob" Here	is	a	slightly	
more	complicated	
example.		Observe	
that	the	first of	this	
list	is	another	 list.		
The	first of	the	first
is	the	string	"alice".



Data	Structures	(cont'd)

("alice" 
(("alice" "bob") "carole")
"dave") 

11

"carole"

"alice" "bob"

"alice" "dave"

Here	is	a	still	more	
complicated	example.



The	template	recipe
Question Answer

Does	the	data	definition	 distinguish	
among	different	subclasses	of	data?

Your	template	needs	as	many	cond
clauses	as	subclasses	that	the	data	
definition	 distinguishes.

How	do	the	subclasses	differ	from	each	
other?

Use	the	differences	 to	formulate	a	
condition	per	clause.

Do	any	of	the	clauses	deal	with	structured	
values?

If	so,	add	appropriate	selector	expressions	
to	the	clause.

Does	the	data	definition	 use	self-
references?

Formulate	``natural	recursions''	for	the	
template	to	represent	the	self-references	
of	the	data	definition.

Do	any	of	the	fields	contain	compound or	
mixed	data?

If	the	value	of	a	field	is	a	foo, add	a	call	to	
a	foo-fn to	use	it.

12

Remember	the	template	
recipe



Template:	functions	come	in	pairs
;; sos-fn : SoS -> ??
(define (sos-fn s)
(cond
[(string? s) ...]
[else (loss-fn s)]))

;; loss-fn : LoSS -> ??
(define (loss-fn los)
(cond
[(empty? los) ...]
[else (... (sos-fn (first los))

(loss-fn (rest los)))]))

13

(first	los)	is	a	SoS.		This	is	mixed	data,	
so	the	last	rule	in	the	template	
recipe	tells	us	we	need	to	wrap	it	in	a	
(sos-fn ...)	.



This	is	mutual	recursion

sos-fn loss-fn

14

defined	in	terms	of	

defined	in	terms	of	



One	function,	one	task

• Each	function	deals	with	exactly	one	data	
definition.

• So	functions	will	come	in	pairs
• Write		contracts	and	purpose	statements	
together,	or

• Write	one,	and	the	other	one	will	appear	as	a	
wishlist function

15



occurs-in?
;; occurs-in? : SoS String -> Boolean
;; returns true iff the given string occurs somewhere in 

the given sos.
;; occurs-in-loss? : LoSS String -> Boolean
;; returns true iff the given string occurs somewhere in 

the given loss.

16

Here's	an	example	of	a	pair	of	
related	functions:	occurs-in? ,	
which	works	on	a	SoS,	and	
occurs-in-loss? ,	which	works	on	
a	LoSS.



Examples/Tests
(check-equal? 

(occurs-in? "alice" "alice")
true)

(check-equal? 
(occurs-in? "bob" "alice")
false)

(check-equal?
(occurs-in? 
(list "alice" "bob")
"cathy") 

false)

(check-equal?
(occurs-in? 
(list (list "alice" "bob")

"carole") 
"bob") 

true)

(check-equal? 
(occurs-in? 
(list "alice" 

(list (list "alice" "bob") 
"dave") 

"eve")
"bob")

true)
17



sos-and-loss.rkt

18



sos-and-loss.rkt

19

The	inspiration	 for	this	livecoding exercise	
comes	from	here or	here. Background	
information



Livecoding:	sos-and-loss.rkt

• occurs-in?	:	http://youtu.be/w_URqq2LrQU
• number-of-strings	:	http://youtu.be/9z-
jdukgRx4

20

The	inspiration	 for	this	livecoding exercise	
comes	from	here and	here (ignore	the	sappy	
music).		Background	information



The	S-expression	pattern

Can	do	this	for	things	other	than	strings:
An SexpOfX is either
-- an X
-- a ListOfSexpOfX

A ListOfSexpOfX is either
-- empty
-- (cons SexpOfX ListOfSexpOfX)

21



The	Template	for	SexpX
;; sexp-fn : SexpOfX-> ??
(define (sexp-fn s)
(cond
[(X? s) ...]
[else (losexp-fn s)]))

;; losexp-fn : ListOfSexpOfX -> ??
(define (losexp-fn los)
(cond
[(empty? los) ...]
[else (... (sexp-fn (first los))

(losexp-fn (rest los)))]))

22

(first	los)	is	a	SexpOfX.		This	is	mixed	
data,	so	the	last	rule	in	the	template	
recipe	tells	us	we	need	to	wrap	it	in	a	
(sexp-fn ...)	.



Sexp of	Sardines

An SoSardines is either
-- a Sardine
-- a LoSSardines

A LoSSardines is either
-- empty
-- (cons SoSardines

LoSSardines)

23

An	Example	of	the	
SexpOfX pattern.



The	Template	for	SoSardines
;; sosard-fn : SoSardines -> ??
(define (sosard-fn s)
(cond
[(sardine? s) ...]
[else (lossard-fn s)]))

;; lossard-fn : LoSSardines -> ??
(define (lossard-fn los)
(cond
[(empty? los) ...]
[else (... (sosard-fn (first los))

(lossard-fn (rest los)))]))

24



Summary

• Nested	Lists	occur	all	the	time
• Mutually	recursive	data	definitions
• Mutual	recursion	in	the	data	definition	leads	
to	mutual	recursion	in	the	template

• Mutual	recursion	in	the	template	leads	to	
mutual	recursion	in	the	code

25



More	Examples
;; number-of-strings : SoS -> Number
;; number-of-strings-in-loss : LoSS -> Number
;; returns the number of strings in the given sos or 

loss.

;; characters-in : SoS -> Number
;; characters-in-loss : LoSS -> Number
;; returns the total number of characters in the strings 

in the given sos or loss.

;; number-of-sardines : SoSardines -> Number
;; returns the total number of sardines in the given 

SoSardines.

26



Summary

• You	should	now	be	able	to:
– Give	examples	of	S-expressions
– Give	3	reasons	why	S-expressions	are	important
–Write	the	data	definition	and	template	for	S-
expressions

–Write	functions	on	S-expressions	using	the	
template

27



Next	Steps

• Study	the	file	06-5-sos-and-loss.rkt	in	the	
Examples	folder

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	6.5
• Go	on	to	the	next	lesson

28


